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A Robust Multiphase Power Flow
for General Distribution Networks
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Abstract—This paper presents a sweep-based three-phase power
flow method for solving general distribution networks that can be
heavily meshed and include transformers around the meshes/loops.
A load-stepping technique is proposed for solving common con-
vergence problems of sweep-based load-flow solvers when dealing
with overloaded radial sections. The proposed power-flow algo-
rithm is based on the iterative solution of radial subsystems as-
sembled together with the mesh equations to comply with Kirch-
hoff equations. The proposed method is robust and efficient for the
solution of heavily loaded systems. Examples are presented for il-
lustration.

Index Terms—Distribution networks, iterative solutions, load
flow, sweep-based methods.

I. INTRODUCTION

P OWER flow in transmission and distribution networks is
computed with different methodologies. The reason is that

transmission networks present different characteristics than dis-
tribution networks and the algorithms developed for one type of
system do not work efficiently on the other.

On one hand, transmission systems are typically three-phase,
highly meshed and mostly operate balanced. Current algorithms
for the analysis of transmission systems rely on the positive
sequence representation of the three-phase system. The most
common computational methodology is still the fast decoupled
power flow method proposed by Stott and Alsaç in 1974 [1].
Often, however, this method fails to converge when the power
system is close to its operating limits and when the R/X ratios of
the transmission lines are high. A first alternative is the use of the
(full) Newton–Raphson power flow as described by Tinney and
Hart in 1967 [2]. Although it has excellent convergence prop-
erties, even under stressed circumstances, the Jacobian matrix
needs to be factorized at every iteration. Additionally, conver-
gence is only assured when the initial point is sufficiently close
to the solution.

On the other hand, distribution systems can have any number
of phases, are generally lightly meshed, and unbalanced. In re-
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cent years, a current injection method (TCIM) has been pro-
posed [3], [4] for large-scale distribution system analysis, ap-
plying the Newton method and modern sparse techniques. Most
distribution systems are radial. Forward/backward sweep [5]
(FBS) methods take advantage of the radial nature and have be-
come the preferred method by many distribution system analysis
programs. Building on the sweep-based approach, [6] and [7]
proposed a method for the analysis of lightly meshed systems.
With the method, the system is broken into radial subnetworks
by opening loops at break points to form a tree. The resulting ra-
dial subnetworks are solved efficiently with forward and back-
ward sweeps. A break-point impedance matrix is constructed
by a multiport compensation technique and used to solve the in-
tegrated system mesh equations. The methodology is based on
current injections applied at break-point nodes and lacks in ef-
ficiency as the system becomes heavily meshed.

An improvement over [6] was developed in [8]. The method
in [8] uses the network graph to construct the sensitivity matrix
(equivalent to the break-point impedance matrix in [6]), and thus
saves significant execution time by avoiding costly compensa-
tion procedures. Also, it uses power flows , instead of
currents, for break-point injections so that PV buses can be han-
dled in a more direct manner.

The load flow methodology described in this paper relies on
the same basic approach as [6] and [8]. That is, 1) forward/back-
ward sweeps are applied to solve the system after the system is
made radial at the break points, and 2) current-flow injection
determined by using a sensitivity matrix is performed at break
points.

All calculations are performed in units of volts, amps, and
ohms. Per unit calculations are not employed. The modeling
encompasses multiphase systems containing three-phase, two-
phase, and one-phase components with impedance imbalances,
load imbalances, and transformers with legs of different sizes.
With this modeling approach impedances must be reflected ac-
cordingly when transformers are involved in the sensitivity ma-
trix formulation.

The following important methodology improvements are in-
troduced in this paper: 1) A load-stepping technique that is in-
sensitive to break-point locations allows for the solution of very
heavily loaded systems. 2) Loops that need special handling
when transformers are involved can be analyzed. 3) The ap-
proach of this paper does not need to set the voltages of break
points close to their nominal values (magnitude and angle). 4)
The algorithm has been efficiently implemented with iterators
[9], [11], [12], [14]. 5) The sensitivity matrix is obtained very ef-
ficiently by simply adding the impedance of the elements around
the loop with the feeder-path traces [12]. These improvements
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Fig. 1. Convention for the current and voltage of a component.

make possible the effective analysis of large heavily meshed
secondary networks with FBS.

II. REVIEW OF RADIAL POWER FLOW

The radial power flow algorithm relies on forward and back-
ward sweeps that are repeated until a convergence criterion is
met. In our study forward and backward sweeps are named as
“forward trace” and “reverse trace”, respectively [9], [10]. For a
component in a circuit (Fig. 1), the current of , , is rep-
resented by the current flowing into at its feeder-path end,
whereas the voltage of is represented by the voltage occur-
ring at its other end where the current leaves the component.
Component might have shunt currents, too. In such a case,
the component current is the sum of the shunt currents and
the current leaving . For transformer components the leaving
currents are accordingly reflected to the feeder-path side. With
loads present, will involve both the load currents and the cur-
rents leaving the component towards the downstream compo-
nents. Loads may be distributed over a line or a cable.

The voltage of the root node or the reference source is always
known. Currents are first initialized to zero. Then, iterations
start in order to find converging voltage and current values. At a
given radial power flow iteration, voltages are calculated by per-
forming the forward trace in which existing currents are used.
Then, the reverse trace is carried out to recalculate/update the
existing currents by using the newly calculated voltages from
the forward trace. These forward and reverse trace calculations
are continued until convergence occurs or the algorithm runs a
specified number of iterations.

Topology iterators such as the forward iterator and the
backward iterator are used for tracing through the components
[11], [12].

1) Convergence Criterion: The convergence is decided by
checking the percent change in current that occurs at the root
node between the previous and the current iteration. As an
example, a 0.05% convergence criterion for change in current
works well for many distribution systems. With this conver-
gence criterion, the algorithm will stop at some iteration if

where and are the currents (with magnitude and
angle) of the reference source as calculated at iterations and

, respectively. Note that for a three-phase reference source
will have three currents, and the convergence criterion is met

individually for each phase.

2) Forward Trace: The calculation starts at the source (or
root node) where the voltage is known. Voltages are then calcu-
lated at the downstream components, following the order given
by the forward iterator. The forward iterator ensures that when
the calculation comes to voltage evaluation at a component ,
the voltage for the feeder-path of has already been calculated.
The voltage across is calculated according to the character-
istics pertinent to . Therefore, each component can embed its
own across (voltage drop) calculation during the forward trace.

3) Reverse Trace: All currents are first reset to zero. The re-
verse trace uses the voltages from the forward trace. The calcu-
lation starts at end components and moves toward the source,
following the order given by the backward iterator. The back-
ward iterator ensures that when the calculation arrives at the cal-
culation of current at component , currents at all downstream
components have already been evaluated. Because of this pro-
cessing order, the current of , , has already been set to some
value corresponding to the current feeding all downstream com-
ponents. In the reverse trace at , is updated with the addi-
tional currents that come from inside , such as internal loads
or admittances. Because is assumed to come from the feeder
path of , the current at the feeder component of is then up-
dated by adding to it.

The radial power flow algorithm is summarized as follows.
1) Initialize: Set all currents to zero. Set counter .
2) Calculate voltages by the forward trace.
3) Calculate currents by the reverse trace.
4) Check convergence: If and the convergence criterion

is met, stop; else, go to Step 5.
5) Update counter, . If , stop (no con-

verging solution found); else, go to Step 2.

III. NETWORK POWER FLOW ANALYSIS

The network power flow analysis builds on the radial system
analysis. As part of the network analysis the system is “radi-
alized”. The radialization is performed by breaking the existing
independent loops at certain points referred to as “cotrees” [13].
The radial power flow is run on the radialized network. The ra-
dial solutions result in voltage disagreements across the broken
cotree points. Using current injections and extractions, a cor-
rection process is employed until the voltages across the cotrees
closely agree. The radial power flow and the correction process
are repeated until all cotree voltage gaps fall below negligibly
small values

The correction process basically consists of injecting current
at one side of the cotree while extracting the same amount of
current out of the other side of the cotree. The injection/ex-
traction currents are determined using a sensitivity matrix. The
sensitivity matrix represents the relationship between the cotree
voltage gaps and currents that can be injected/extracted at cotree
points. Therefore, the way the sensitivity matrix is formulated
plays a central role in the success of the network power flow
calculation.

A. Sensitivity Matrix Formulation For Single-Loop Networks

The procedure for sensitivity matrix formulation is now ex-
plained using the single-loop network shown in Fig. 2. The net-
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Fig. 2. Simple network with one loop.

Fig. 3. Network of Fig. 2 as radialized for power flow analysis.

work has one reference source C1. The common point T be-
tween C4 and C6 is the cotree point where the system is to be
radialized for analysis (Fig. 3). Assume the power flow is per-
formed on the radialized system, resulting in a voltage differ-
ence across T. For a three-phase system, involves three
voltage differences.

Each cotree involves an adjacent component and a feeder path
component [10]–[13]. The cotree voltage gap is defined as the
voltage difference between the feeder-path side and the adja-
cent side of the cotree point. In this case C4 and C6 become the
feeder-path and adjacent sides of T, respectively. Ignoring the
effects of loads and any other shunt elements, the voltage gap
is expected to disappear if the current injection/extraction is se-
lected properly, illustrated in Fig. 3 with . The injected current
is determined by

(1)

where ; and , , , and are
the impedances of C4, C3, C5 and C6, respectively. in (1)
is referred to as the sensitivity matrix. Here represents three
phase currents while corresponds to three phase voltage
gaps. Hence, is a 3 3 matrix. is formulated as follows.

1) Reset .
2) Find the first common-path component associated

with T.
2a) Start from the feeder-path side of T, mark compo-
nents as moving along the feeder path until the refer-
ence source. In Fig. 3, components
will be marked by this trace.
2b) Start from the adjacent side of T, move along the
feeder path, stop if a component marked by (2a) is en-

Fig. 4. Simple example for multiloop network.

countered, identifying this component as . In Fig. 3
C2 will be identified as .

3) Start from the feeder-path side of T, add impedances to as
moving along the feeder path until is encountered. Do
not include . In Fig. 3 this trace will include .

4) Start from the adjacent side of T, add impedances to as
moving along the feeder path until is encountered. Do
not include . In Fig. 3 this trace will include .

The common-path of a cotree consists of those components
that are encountered in both feeder-path traces which are per-
formed from the feeder-path and adjacent sides of the cotree.
In Fig. 3 components form the common-path for T.
Also, the union of the components that are encountered in steps
3–4 above constitutes the loop trace for the cotree.

B. Sensitivity Matrix for Multiloop Networks

The procedure to obtain the sensitivity matrix consists of
adding component impedances to the sensitivity matrix as
moving along cotree loop traces. When a component is visited
on a cotree loop trace, it is checked if the same component is
included in other cotree loop traces. If so, the impedance of the
component is added to at the matrix entry corresponding to
the cotrees involved.

The component impedance is added to according to the type
of cotree paths. The impedance is added if two cotrees have the
component on the same type of path. That is, the component is
either on the feeder-path side of both cotrees, or on the adjacent-
side feeder path of both cotrees. On the other hand, the negative
of the impedance is added if the two cotrees have the component
on different path types (i.e., one is a feeder path trace and the
other is an adjacent feeder path trace).

Consider the network shown in Fig. 4. This three-phase net-
work has two loops associated with the cotree points T1 and
T2. The sensitivity matrix is a 2 2 block matrix, where each
block is given as a 3 3 matrix. , for instance, will corre-
spond to a 3 3 matrix representing the mutual coupling be-
tween T1 and T2.

Cotree paths and traces are detailed in Fig. 5. Note that C6 is
the only component that is included in the loop traces of both
cotrees. Also C6 is on the adjacent feeder path trace of T1 and
the feeder trace of T2. Therefore, the mutual terms and
will involve the negative of the component impedance .

is formulated as follows.
1) Reset , and set the cotree index .
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Fig. 5. Network of Fig. 4 as radialized at cotree points for current injection.

2) Starting from the feeder path side of , trace the feeder
path. For each component on the path do the following:

2a) If is the first common path component of ,
stop the trace and go to Step 3.
2b) Add to .
2c) Check for other cotrees whose cotree loop traces
include . For each such cotree , do the following:
If is on the feeder path of , then ;
else, .

3) Starting from the adjacent side of , trace the feeder path.
For each component on the path, do the following:

3a) If is the first common path component of ,
stop the trace and go to Step 4.
3b) Add to .
3c) Check for other cotrees whose cotree loop traces
include . For each such cotree found, do the fol-
lowing:
If is on the adjacent-side feeder path of , then

; else, .
4) Consider the next cotree: , if stop; else,

go to Step 2.
According to the procedure above, the network of Fig. 4 has
the sensitivity matrix shown in the equation at the bottom of the
page. Cotree injection currents are determined by solving

C. Sensitivity Matrix for Loops With Transformers

Transformers are modeled such that transformer impedances
are assumed to be reflected to the load side. Consider Fig. 6. The
transformer current and voltage are represented by and as
shown. represents the internal voltage where the feeder-side
voltage is ideally transformed. The load-side voltage is
obtained after subtracting from this internal voltage the voltage

Fig. 6. Model for a transformer component �.

drop due to transformer impedance. To simplify the discussion,
transformer magnetizing currents are neglected.

For the sensitivity matrix formulation, two matrices (denoted
by and ) are defined in order to perform the following
transformations:

where

voltage-reflection matrix: a 3 3 transformation
matrix that reflects the feeder-side voltage to the
load side;

current-reflection matrix: a 3 3 transformation
matrix that reflects the load-side current to the
feeder side.

A 3 3 complex matrix is used for both reflection matrices.
Note that the diagonal entries in the matrices and are not
necessarily equal. By using the complex matrix, any phase-shift
effect with transformer winding connections is incorporated into
the reflection process. The effect of off-nominal individual tap
positions at each phase can also be included.

The reflection matrices of the transformer are used in case
the transformer is encountered in a cotree loop trace during the
sensitivity matrix formulation. Note that during loop traces (as
performed by Steps 2 and 3 in the previous section) the load side
of the transformer becomes the cotree side. The objective is to
obtain the source-side voltage as it would appear at the cotree
side so that the resulting cotree side voltage can be expressed in
terms of the cotree current.

Consider the single-loop network in Fig. 7. The transformer
components C3 and C6 are found on the loop trace of cotree
point T. Nominally, the loop will have two voltage levels. The
sensitivity matrix for this case is shown in the figure. Only com-
ponent C5 is reflected. The other loop components are already
on the cotree-side of the loop.

The general sensitivity-matrix formulation for multiple loops
with transformer components will be summarized below. The
procedure can be used for networks with general loops where
more than one transformer can exist along the path when moving
from either of the cotree sides to the cotree common path—that
is, loops with two or more voltage levels.

An example is provided in Fig. 8. The network in the figure
has two cotrees, T1 and T2. Also, there are two reference
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Fig. 7. Sensitivity matrix for a single loop with two transformers (C3 and C6).

Fig. 8. Sensitivity matrix for a network with two loops and two reference
sources.

sources (C1 and C10) such that only C11 is associated with
source C10 while the other components are associated with
source C1. Feeder path (solid lines) and adjacent traces (dashed
lines) are also indicated in the figure. Note that T2, which is
associated with different reference sources on its feeder path
and adjacent sides, does not have a common path.

C3 is the only mutual component between the cotree traces
of T1 and T2. The effect of T2 cotree current on T1 cotree
voltage will be . Note that the sign is due
to C3 having different types of traces from the cotrees. Sim-
ilarly, T1 cotree current will impact the T2 cotree voltage by

.
Let be 3 3 identity matrix. The steps for sensitivity-matrix

formulation procedure are as follows.
1) Reset , set the cotree index .
2) Reset .
3) Starting from the feeder-path side of Ti, trace the feeder

path. For each component Ck on the path, do the following:
3a) If Ck is the first common-path component of ,
stop the trace and go to Step 4.
3b) Add to .
3c) Check for other cotrees whose cotree loop traces
include Ck. For each such cotree found, do the
following:
• Reset .
• Perform feeder path trace from to Ck (not in-

cluded). At each transformer component Cr, update
.

• If Ck is in the feeder path of , then
; else, .

3d) If Ck is a transformer component update:

4) Reset , .
5) Starting from the adjacent side of Ti, trace the feeder path.

For each component Ck on the path, do the following:
5a) If Ck is the first common path component of Ti,
stop the trace and go to Step 4.
5b) Add to .
5c) Check for other cotrees whose cotree loop traces
include Ck. For each cotree Tj found, do the following:
• Reset .
• Perform feeder path trace from Tj to Ck (not in-

cluded). At each transformer component Cr, update
.

• If Ck is on the adjacent-side feeder path of Tj, then
; else, .

5d) If Ck is a transformer component update:

6) Consider the next cotree: update , if stop;
else, go to Step 2.

D. Network Power Flow Algorithm

In the network power flow analysis the cotree voltage updates
using the current injection process are repeated until the conver-
gence criterion is met or until the number of iterations exceeds a
specified value. The convergence criterion used is voltage differ-
ences across all cotrees are less than a specified percent of nom-
inal cotree voltages. A convergence criterion of 0.02% works
well for many distribution networks. With this figure, if a cotree
is located at a primary point in a 13.2-kV grounded-wye distri-
bution circuit, the line-to-ground voltage difference across each
phase of the cotree is less than 1.52 V. The algorithm steps are
summarized as follows.

1) Reset network power flow iteration counter .
2) Calculate and perform an LU-decomposition of the sensi-

tivity matrix .
3) Reset cotree injection currents, .
4) Run radial power flows.
5) Check for network convergence. If converged, stop.
6) Find cotree injection currents using , where

represents the needed change in cotree injection
currents.

7) Update the cotree injection currents: .
8) Execute the next network iteration: , if ,

stop (no converging solution found); else, go to Step 4.
The sensitivity matrix is calculated once and is not updated

for every network iteration unless the network topology changes
throughout the analysis. Also, the matrix is LU-decomposed
once, and used at every iteration with new values.

When the effect of loads and shunt elements are not consid-
ered, the voltage gaps are expected to disappear in one itera-
tion, by the injected currents. However, because of the nonlinear
loads and the existing shunt elements that are not involved in
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the sensitivity matrix calculation, it may in practice take sev-
eral network iterations before all the voltage gaps come close to
negligibly small amounts. Therefore, the number of iterations
depends on the number of nonlinear loads and shunt elements
as well as the number of loops being solved. In typical distribu-
tion networks, convergence is achieved within a few iterations
(generally less than five).

As the number of loops grows, Step 2 starts dominating the
total execution time of the power flow analysis. In addition to
the number of loops, the effect becomes more pronounced with
denser (i.e., less sparse) sensitivity matrices. Therefore, the spar-
sity of the matrix is exploited by avoiding unnecessary complex
number multiplications in order to speed the process in Step 2.

IV. NETWORK POWER FLOW WITH LOAD STEPPING

The radial power flow is a key computational module of the
network power flow. The radial power flow must converge first,
in order for the network power flow to proceed with the cur-
rent-injection process. If the cotree points, where the network is
radialized, are not strategically selected, then the radial power
flow might fail to converge due to the fact that some sections
of the network pick up an unrealistically high load while some
other sections become lightly loaded. In other words, due to the
placement of cotree points, a radial section might initially carry
much more power than it would have in the final converged so-
lution, even to the point of the static stability limits of the lines
being exceeded and no radial solution existing. While one could
pre-examine the network in order to ensure that the cotrees are
located so that the radialized solutions converge, with large net-
works this would be a tedious task.

Here a technique is used to assure that the radial power flow
does not fail due to improper cotree locations. The technique
starts the radial power flow with reduced loads (that is, loads
are scaled to a very small percentage) instead of using the actual
loads. With all loads uniformly scaled-down, it is much easier
for the radial power flow to converge, therefore, obtaining an ini-
tial network power flow solution (where cotree currents are ob-
tained). Loads are then increased to the next level. By comparing
the new loading with the previous one, which has a converging
solution, cotree currents are estimated for the new loading level.
With the estimated cotree currents in place, the radial power
flow will converge easier than with the case where no initial
cotree currents exist. The network power flow solution is then
obtained at the new loading level, and then the loads are stepped
again until the full loading level is achieved. The procedure is
summarized below.

1) Set loading-level index .
2) Calculate and LU-decompose the sensitivity matrix .
3) Reset cotree injection currents, .
4) Find the network power flow solution at loading level .
5) If the full loading level ( ) is achieved, stop;

else, go to Step 6.
6) Step to the next loading level.

6a) Update the loading-level index: .
6b) Estimate cotree currents for the new loading level:

.
7) Go to Step 4.

Fig. 9. Meshed network to be broken into radial branches. The break point was
selected as the dark ��� � branch.

Note that Step 4 above involves the network power flow algo-
rithm steps that are outlined in the previous section, except for
Steps 2 and 3, which are now handled in Steps 2 and 3 of this
algorithm.

The authors have successfully used two loading steps at
for typical distribution network power flow

studies. A first step with a one-thousandth of the load is in most
practical cases sufficient to assure convergence of all the radials
as it will be shown next. However, the method is completely
general and greater load reduction ratios can be implemented in
a self-adjusting manner when necessary. Thus, if one or more
radial subsystems do not converge after a first load reduction
step, a second reduction step could be applied.

For heavily loaded large systems intermediate loading steps
may be necessary. Experience with a large number of real sys-
tems has shown that loading steps at are ef-
fective to get the convergence at 100% loading in the third step.
The intermediate solution at 5% loading is usually as easy and as
fast as that at 0.1%, yet provides much better initial cotree cur-
rent estimates for 100% loading than does the solution at 0.1%
loading.

V. TEST RESULTS

A. Convergence Problems With Traditional FBS

When a system is radialized it is possible to create acciden-
tally radial sections that have no solution. Uncharacteristically
large loads can be left connected to a weak (high impedance)
path. There are two possible solutions to this problem: 1) Imple-
ment an algorithm for the (optimal) selection of the location of
break points where the current is minimal along the loop (ideally
zero); 2) Initialize the current injections to shift the large load
current to the strong (small impedance) side of the broken loops.
Both require the knowledge of an approximate solution. In this
paper we have computed very efficient predictions of the current
injections by step loading. Below two examples are presented.

1) Divergent Radial Iterations (Heavy Load): When in the
process of selecting the breaking points of a network to ob-
tain a tree (breaking the loops), one or more of the resulting
radial subsystems has a (very) heavy load, and the standard so-
lution method diverges. Consider the resistive system depicted
in Fig. 9. The best location for the break point is on the
branch. However, to illustrate the convergence problem and the
proposed solution consider that the break point is set on the

branch joining the upper and lower sides of the circuit
(dark impedance in Fig. 9).

Fig. 10 shows the radial section that cannot be solved with the
traditional procedure since it consists of a (very) weak system
with a (very) large load. Let us start the conventional iteration
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Fig. 10. System with divergent radial iterations due to heavy load because of
the non-optimal selection of break points.

procedure with a flat start: . The first value of
the load current is computed as

The voltage drop in the series impedances are

Now the voltage at the load is updated as

The load voltage has a larger and negative value at the first it-
eration. Following the same procedure, we get the subsequent
divergent iterations:

The divergent radial iterations are eliminated by step-loading.
Consider the case when the load is reduced by a factor of 1000;
thus, the first solution yields

With the same procedure, we get the following convergent iter-
ations:

Note that very few iterations are needed to obtain conver-
gence of the radial subsystems. This is so because at this step
in the solution the system is (very) lightly loaded and therefore
its behavior is linear.

Now, we are in a position to compute the current injection
coming from the lower side and step the load up. The voltage in
the lower (strong) radial is virtually 13.8 kV because it would
be loaded with only 1 W (remember that load has been scaled
down 1000 times) and the impedances are small. The sensitivity
matrix is the sum of the impedances around the loop:

Fig. 11. Procedure to extrapolate the current injection. (a) Reduced load
system. (b) Full load system.

Fig. 12. System with divergent radial iterations due to heavy loading because
one transformer will have to carry the entire load at the first iteration.

Fig. 13. System with divergent radial iterations due to a 400% overload.

. Therefore, the current injection for the circuit with
reduced load is computed as

Fig. 11 illustrates the procedure to extrapolate the current in-
jection from the reduced load system to the full load system. The
current injection for the full load is computed by magnifying the
current injection of the reduced load by the reduction factor used
in load stepping. Note that the injected current (72.776 A) from
the adjacent circuit is practically equal to the load current for
flat start (72.464 A). This is expected since the load current is
mainly supplied from the lower branch and our method is ca-
pable to detect this. Additionally, note that none of the circuits
in Fig. 11 presents convergence problems; therefore a robust so-
lution has been obtained.

2) Four (or More) Parallel Transformers: A common ar-
rangement in distribution substations is to have four (or more)
transformers in parallel supplying a set of feeders; see Fig. 12.
Because of the need to break the assembled system into radial
subsystems the entire load gets assigned to one of the trans-
formers at the beginning of the simulation as shown in Fig. 13. In
our example a load of 10 MW has to be supplied by a 2.5-MVA
transformer at the beginning of the simulation. This load is too
large for the normal forward-backward sweeps method that fails
to converge.

Load stepping as described above has been used successfully
for the solution of this kind of systems. Fig. 14 illustrates the
intermediate step when the load is reduced 1000 times. This
is used to compute the current injections shown in the figure.
The solution is obtained very easily in a few iterations since the
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Fig. 14. System with a first estimation of the current injections for a 1000 times
reduced load.

TABLE I
DISTRIBUTION TEST SYSTEMS FROM THREE U.S. UTILITIES

system is very lightly loaded. Then the computed current injec-
tions (0.1093 A) are magnified 1000 times to give the necessary
109.3 A injection for the solution of the system at full load. This
is very close to the actual solution where each transformer sup-
plies 109.7 A to the load operating at 13.157-kV line-to-line.

B. Real Distribution Systems

The approach presented here has been successfully used on a
number of very large-scale distribution systems. Six test systems
are selected from three U.S. utilities. The test systems are given
in Table I, including such system data as size, total numbers of
(three-phase) loops, load locations, line and transformer com-
ponents, as well as secondary and all (primary and secondary)
components modeled. The systems model the secondary sides

of distribution transformers where most of
the loads are placed. The majority of the loops formed are due
to network transformers tied at their secondaries. Shunt com-
ponents are included. The number of secondary components is
provided because in our experience large systems with long sec-
ondary sections are prone to convergence problems caused by
high secondary currents yielding voltage fluctuations in the for-
ward sweep.

Sys1 represents the model of an area of the Staten Island
system in New York with 33-kV sub-transmission feeders
feeding 4-kV distribution feeders. Most of the loops are formed
at the 33-kV level. Sys2 represents 13-kV primary feeders
that supply power into a mid-size secondary network in the
metropolitan Manhattan area. Similarly, Sys3 models a down-
town network (fed by 13-kV primary feeders) in St. Louis. Sys4
and Sys6 represent two suburban circuits in Detroit, with some
commercial and industrial loads. Sys4 is mostly radial, and the
loops are formed at the primary level. Sys5 models another
Detroit circuit that is radial feeding a residential suburban area.

By comparing the number of loops to the number of compo-
nents it can be said that Sys1 and Sys4 are very lightly meshed,

TABLE II
EXECUTION TIMES OF POWER FLOW AS RUN ON TEST

SYSTEMS WITH CONSTANT-POWER LOAD MODEL

while Sys2 and Sys3, are heavily meshed systems corresponding
to networked distribution feeders as found in urban cores.

The power flow algorithm has been run for the test systems
on a computer with 2.66-GHz Intel Core2 Duo processor. The
convergence criteria of 0.05% and 0.02% are used for the root-
node current change in radial power flow and the cotree voltage
difference in network power flow, respectively. The cpu times
are presented in Table II.

Sys1 is a very large distribution system, which is also heavily
loaded running at one of its summer-peak periods. For this
system, three load steps at are used. For
the others, two load steps are applied.

The total execution time for each power flow run, along with
the number of iterations, is provided in Table II. For the two
radial systems, Sys5 and Sys6, the iterations given correspond
to the number of forward/reverse traces (i.e., radial iterations)
in which the radial power flow converges (“r” denotes a radial
iteration). With looped systems, the number of iterations corre-
sponds to network iterations at each load step. The total number
of radial iterations during all network iterations is also given.
For instance, the power flow converged on Sys1 after taking 1,
3 and 5 network iterations at 0.1%, 5% and 100% load steps,
respectively, and a total of 26 radial iterations have been per-
formed for the entire simulation. Execution time for sensitivity
matrix processing, which may take up a significant portion of
network power flow execution, is also presented. The total exe-
cution time involves both sensitivity matrix processing and net-
work iterations. Sensitivity matrix processing is represented as
the combination of matrix construction and LU-decomposition.

The power flow has also been run on the test network systems
to make a comparison of performance with and without the load-
stepping approach. As shown in Table III, the systems have been
tested for two additional loading levels as they are overloaded by
30% and 60%. The approximate execution times and the number
of iterations required for each case are presented in the table.

From Table III it may be seen that for lightly meshed and
lightly loaded systems the load stepping process may increase
the execution time. However, as systems become more meshed
and loaded, the load stepping technique becomes competitively
efficient and more reliable when compared to the traditional
method. In fact, there may be instances where the load stepping
technique can provide faster solution than the traditional ap-
proach. Additionally, although not presented in the table, load
stepping improves the convergence as systems become very
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TABLE III
POWER FLOW PERFORMANCE AS RUN ON TEST SYSTEMS FOR THREE

SYSTEM-LOADING LEVELS WITH AND WITHOUT LOAD-STEPPING TECHNIQUE

heavily loaded. For example, it is observed that when a double
contingency (loss of two 33-kV feeders) occurs in Sys1 at 100%
loading, the load-stepping method continues to converge, while
the conventional method fails.

For radial systems the factors that affect the convergence
properties (number of iterations and execution time) the most
are: 1) the total number of components; and 2) the loading level.
For meshed systems the number of loops becomes increasingly
significant. For very heavily meshed systems, the processing
of a large sensitivity matrix consumes most of the execution
time.

VI. CONCLUSIONS

This paper has presented several improvements over the for-
ward-backward sweeps method commonly used for the solu-
tion of radial and lightly meshed distribution systems. For ex-
ample, a load-stepping technique that is not very sensitive to
the location of the break-points allows for the solution of very
heavily loaded systems. As conceived and implemented, the
load-stepping technique does not increase the computation ef-
fort for heavily meshed systems where, in fact, the execution
time could be shorter than with the traditional approach. An-
other improvement is that the new method is capable of solving
systems involving several looped transformers. The approach
of this paper does not need to pre-set the voltages of the break
points close to their nominal values. The algorithm has been
efficiently implemented with the use of modern programming
techniques based on iterators. Examples on theoretical and real
systems have been presented.
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